skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Min Liu, Yunbo Zhang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many rapid fabrication technologies are directed towards layer wise printing or laser based prototyping. We propose WireFab, a rapid modeling and prototyping system that uses bent metal wires as the structure framework. WireFab approximates both the skeletal articulation and the skin appearance of the corresponding virtual skin meshes, and it allows users to personalize the designs by (1) specifying joint positions and part segmentations, (2) defining joint types and motion ranges to build a wire-based skeletal model, and (3) abstracting the segmented meshes into mixed-dimensional appearance patterns or attachments. The WireFab is designed to allow the user to choose how to best preserve the fidelity of the topological structure and articulation motion while selectively maintaining the fidelity of the geometric appearance. Compared to 3D-printing based high-fidelity fabrication systems, WireFab increases prototyping speed by ignoring unnecessary geometric details while preserving structural integrity and articulation motion. In addition, other rapid or low-fidelity fabrication systems produce only static models, while WireFab produces posable articulated models and has the potential to enable personalized functional products larger than the machines that produce them. 
    more » « less